Discipline :-	Semester:-	Name of the Teaching Faculty: -
ELECTRICAL	5 th	
Subject:-	No of Days/per Week Class Allotted	Semester From:-
DIGITAL ELECTRONICS &	:-	
MICROPROCESSOR (TH-3)	05	
Week	Class Day	Theory
	1 st	Introduction to DIGITAL ELECTRONICS
1 st	2 nd	NUMBER SYSTEMS AND CODES
Ŧ	3 rd	List different number system & their relevance: binary, octal, decimal, Hexadecimal, Study the Conversion from one number system to another
	4 th	Perform Arithmetic operations of binary number systems.
	5 th	1's & 2's complement of Binary numbers., Perform Subtraction of binary numbers using complementary numbers. Perform multiplication and division of binary numbers.
- nd	1 st	Define concept of Digital Code & its application. Distinguish between weighted & non-weight Code
2 nd	2 nd	Study Codes: definition, relevance
	3 rd	Types of code (8-4-2-1, Gray, Excess-3 and importance of parity bit.
	4 th	LOGIC GATES
	5 th	Discuss the Basic Logic & representation using electric signals
	1 st	Learn the Basic Logic gates (NOT, OR, AND, NOR, NAND, EX-OR & EXNOR) – Symbol, function, expression, truth table & example IC nos.
3 rd	2 nd	Define Universal Gates with examples & realization of other gates
	3 rd	BOOLEAN ALGEBRA
	4 th	Understand Boolean : constants, variables & functions. Comprehend the Laws of Boolean algebra
	5 th	State and prove Demorgan's Theorems. Represent Logic Expression : SOP & POS forms & conversion
4 th	1 st	Simplify the Logic Expression/Functions (Maximum of 4 variables) : using Boolean algebra and Karnaugh's map methods
	2 nd	What is don't care conditions ? Realisation of simplified logic expression using K-Map
	3 rd	Realisation of simplified logic expression using gates. Illustrate with examples the above.
	4 th	COMBINATIONAL CIRCUITS
	5 th	Define a Combinational Circuit and explain with examples. Arithmetic Circuits (Binary)

	1 st	Realise function, functional expression, logic circuit, gate level circuit, tru
5 th		table & applications of Half-adders,
	2 nd	Full-adder & full-Subtractor.
		Explain Serial & Parallel address: concept comparison & application
	3 rd	Discuss Multiplexers: definition, relevance, gate level circuit of simple. Do multiplexers (1:4) logic circuit with truth Table
	4 th	Explain the working of Binary-Decimal Encoder & Decoder.
	5 th	Working of 2-bit Magnitude Comparator: logic expression, truth table
	1 st	SEQUENTIAL CIRCUITS
6 th	2 nd	Define Sequential Circuit : Explain with examples.
	3 rd	Know the Clock-definition characteristics, types of triggering & waveform
_	4 th	Define Flip-Flop, Study RS, Clocked RS, D, T, JK, MS-JK flip-flop with logic Circuit and truth tables.
	5 th	Concept of Racing and how it can be avoided.
7 th	1 st	Applications of flip-flops & its conversion.
70	2 nd	COUNTERS
-	3 rd	List the different types of counters-Synchronous and Asynchronous.
	4 th	Explain the modulus of a counter
	5 th	COUNTERS
	1 st	List the different types of counters-Synchronous and Asynchronous.
	_	Explain the modulus of a counter
8 th		4-bit asynchronous counter with timing diagram
-	2 nd	Asynchronous decade counter
	3 rd	4-bit synchronous counter
	4 th	Compare Synchronous and Asynchronous counters and know their ICs no
	5 th	REGISTERS
	1 st	Explain the working of various types of shift registers – SISO
9 th	2 nd	SIPO
2	3 rd	PISO
	4 th	PIPO, with truth table using flip flop.
	5 th	8085 MICRO PROCESSOR
	1 st	Introduction to microprocessor, Micro computers
	2 nd	Architecture of intel 8085A Microprocessor
10 th	3 rd	, Functional Block diagram and Description of each block.
	4 th	Pin diagram and description.
	5 th	Stack, Stack Pointer, Stack Top
	1 st	Interrupts , Op-code & Operands
	2 nd	Grouping and Explanation of different group instructions with examples
11 th	3 rd	Instruction sets & Addressing modes

	4 th	
		Instruction fetching and execution, Timing diagram of different
		machine cycle.
	5 th	Timing diagram of different machine cycle, 8085A timing states.
	1 st	Basic Interfacing Concept, Memory Mapping & I/O Mapping
	2 nd	Programmable peripheral interface Intel -8255, Functional block diagram
12 th		and Operation of 8255, Programming of 8255
	3 rd	Application Using 8255: Seven Segment LED display
	4 th	Square Wave Generator
	5 th	Traffic light controller
	1 st	
	2 nd	
13 th	3 rd	Doubt Clearing Classes and Revision of Syllabus
	4 th	
	5 th	
	1 st	
	2 nd	
14 th	3 rd	Previous Five (05) Years Semester Question Answer Discussion
	4 th	
	5 th	

Teaching Faculty

<u>HOD, E.E</u>

Academic Co-ordinator

Discipline :-	Semester:-	Name of the Teaching Faculty: -
ELECTRICAL	5 th	LINCOLN MOHANTY
Subject:-	No of Days/per Week Class Allotted	Semester From:- 01 st September, 2020 To:- 20 th February, 2021

DIGITAL ELECTRONICS & MICROPROCESSOR LAB	:- 01	
Week	Class Day	LABORATORY
1 st	1^{st}	Verify truth tables of AND, OR, NOT, NOR, NAND, XOR, XNOR gates.
		Implement various gates by using universal properties of NAND & NOR
		gates and verify truth table.
2 nd	2^{nd}	Implement half adder and Full adder using logic gates.
		Implement half subtractor and Full subtractor using logic gates.
3 rd	3 rd	Implement a 4-bit Binary to Gray code converter. Implement a Single bit
		digital comparator.
4 th	4 th	Study Multiplexer and de-multiplexer
5 th	5 th	Study of flip-flops. i) S-R flip flop ii) J-K flip flop iii) flip flop iv) T flip flop
6 th	6 th	Realize a 4-bit asynchronous UP/Down counter with a control for up/down
		counting
7 th	7 th	Realize a 4-bit synchronous UP/Down counter with a control for up/down
		counting.
8 th	8 th	Implement Mode-10 asynchronous counters
9 th	9 th	Study shift registers.
10 th	10 th	General Programming using 8085A development board
		1'S Complement, 2'S Complement
11 th	11 th	Addition of 8-bit number
		Subtraction of 8-bit number
12 th	12 th	Decimal Addition 8-bit number
		Decimal Subtraction 8-bit number.
13 th	13 th	Compare between two numbers
		Find the largest in an Array, Block Transfer
14 th	14 th	Traffic light control using 8255, Generation of square wave using 8255

Teaching Faculty

HOD , ELE

Academic Co-ordinator

<u>Principal</u>

Government Polytechnic, Puri