Discipline :- ELECTRICAL	Semester:- $5^{\text {th }}$	Name of the Teaching Faculty: -
Subject:- DIGITAL ELECTRONICS \& MICROPROCESSOR (TH-3)	No of Days/per Week Class Allotted 05	Semester From:-
Week	Class Day	Theory
$1^{\text {st }}$	$1^{\text {st }}$	Introduction to DIGITAL ELECTRONICS
	$2^{\text {nd }}$	NUMBER SYSTEMS AND CODES
	$3{ }^{\text {rd }}$	List different number system \& their relevance: binary, octal, decimal, Hexadecimal, Study the Conversion from one number system to another
	$4^{\text {th }}$	Perform Arithmetic operations of binary number systems.
	$5^{\text {th }}$	1's \& 2's complement of Binary numbers., Perform Subtraction of binary numbers using complementary numbers. Perform multiplication and division of binary numbers.
$2^{\text {nd }}$	$1^{\text {st }}$	Define concept of Digital Code \& its application. Distinguish between weighted \& non-weight Code
	$2^{\text {nd }}$	Study Codes: definition, relevance
	$3{ }^{\text {rd }}$	Types of code (8-4-2-1, Gray, Excess-3 and importance of parity bit.
	$4^{\text {th }}$	LOGIC GATES
	$5^{\text {th }}$	Discuss the Basic Logic \& representation using electric signals
$3{ }^{\text {rd }}$	$1^{\text {st }}$	Learn the Basic Logic gates (NOT, OR, AND, NOR, NAND, EX-OR \& EXNOR) - Symbol, function, expression, truth table \& example IC nos.
	$2^{\text {nd }}$	Define Universal Gates with examples \& realization of other gates
	$3^{\text {rd }}$	BOOLEAN ALGEBRA
	$4^{\text {th }}$	Understand Boolean : constants, variables \& functions. Comprehend the Laws of Boolean algebra
	$5^{\text {th }}$	State and prove Demorgan's Theorems. Represent Logic Expression : SOP \& POS forms \& conversion
$4^{\text {th }}$	$1^{\text {st }}$	Simplify the Logic Expression/Functions (Maximum of 4 variables) : using Boolean algebra and Karnaugh's map methods
	$2^{\text {nd }}$	What is don't care conditions ? Realisation of simplified logic expression using K-Map
	$3{ }^{\text {rd }}$	Realisation of simplified logic expression using gates. Illustrate with examples the above.
	$4^{\text {th }}$	COMBINATIONAL CIRCUITS
	$5^{\text {th }}$	Define a Combinational Circuit and explain with examples. Arithmetic Circuits (Binary)

$5^{\text {th }}$	$1^{\text {st }}$	Realise function, functional expression, logic circuit, gate level circuit, truth table \& applications of Half-adders,
	$2^{\text {nd }}$	Full-adder \& full-Subtractor. Explain Serial \& Parallel address: concept comparison \& application
	$3{ }^{\text {rd }}$	Discuss Multiplexers: definition, relevance, gate level circuit of simple. Demultiplexers (1:4) logic circuit with truth Table
	$4^{\text {th }}$	Explain the working of Binary-Decimal Encoder \& Decoder.
	$5^{\text {th }}$	Working of 2-bit Magnitude Comparator: logic expression, truth table
$6^{\text {th }}$	$1{ }^{\text {st }}$	SEQUENTIAL CIRCUITS
	$2^{\text {nd }}$	Define Sequential Circuit : Explain with examples.
	$3{ }^{\text {rd }}$	Know the Clock-definition characteristics, types of triggering \& waveform.
	$4^{\text {th }}$	Define Flip-Flop, Study RS, Clocked RS, D, T, JK, MS-JK flip-flop with logic Circuit and truth tables.
	$5^{\text {th }}$	Concept of Racing and how it can be avoided.
$7^{\text {th }}$	$1{ }^{\text {st }}$	Applications of flip-flops \& its conversion.
	$2^{\text {nd }}$	COUNTERS
	$3{ }^{\text {rd }}$	List the different types of counters-Synchronous and Asynchronous.
	$4^{\text {th }}$	Explain the modulus of a counter
	$5^{\text {th }}$	COUNTERS
$8^{\text {th }}$	$1^{\text {st }}$	List the different types of counters-Synchronous and Asynchronous. Explain the modulus of a counter 4-bit asynchronous counter with timing diagram
	$2^{\text {nd }}$	Asynchronous decade counter
	$3{ }^{\text {rd }}$	4-bit synchronous counter
	$4^{\text {th }}$	Compare Synchronous and Asynchronous counters and know their ICs nos.
	$5^{\text {th }}$	REGISTERS
$9^{\text {th }}$	$1{ }^{\text {st }}$	Explain the working of various types of shift registers - SISO
	$2^{\text {nd }}$	SIPO
	$3{ }^{\text {rd }}$	PISO
	$4^{\text {th }}$	PIPO, with truth table using flip flop.
	$5^{\text {th }}$	8085 MICRO PROCESSOR
$10^{\text {th }}$	$1^{\text {st }}$	Introduction to microprocessor, Micro computers
	$2^{\text {nd }}$	Architecture of intel 8085A Microprocessor
	$3^{\text {rd }}$, Functional Block diagram and Description of each block.
	$4^{\text {th }}$	Pin diagram and description.
	$5^{\text {th }}$	Stack, Stack Pointer, Stack Top
$11^{\text {th }}$	$1^{\text {st }}$	Interrupts, Op-code \& Operands
	$2^{\text {nd }}$	Grouping and Explanation of different group instructions with examples
	$3{ }^{\text {rd }}$	Instruction sets \& Addressing modes

$12^{\text {th }}$	$4^{\text {th }}$	Instruction fetching and execution, Timing diagram of different

Teaching Faculty

HOD, E.E
Academic Co-ordinator

Discipline :-	Semester:-	Name of the Teaching Faculty: -
ELECTRICAL	$5^{\text {th }}$	LINCOLN MOHANTY
Subject:-	No of Days/per Week Class Allotted	Semester From:-

DIGITAL ELECTRONICS \& MICROPROCESSOR LAB	01	
Week	Class Day	LABORATORY
$1{ }^{\text {st }}$	$1^{\text {st }}$	Verify truth tables of AND, OR, NOT, NOR, NAND, XOR, XNOR gates. Implement various gates by using universal properties of NAND \& NOR gates and verify truth table.
$2^{\text {nd }}$	$2^{\text {nd }}$	Implement half adder and Full adder using logic gates. Implement half subtractor and Full subtractor using logic gates.
$3^{\text {rd }}$	$3^{\text {rd }}$	Implement a 4-bit Binary to Gray code converter. Implement a Single bit digital comparator.
$4^{\text {th }}$	$4^{\text {th }}$	Study Multiplexer and de-multiplexer
$5^{\text {th }}$	$5^{\text {th }}$	Study of flip-flops. i) S-R flip flop ii) J-K flip flop iii) flip flop iv) T flip flop
$6^{\text {th }}$	$6^{\text {th }}$	Realize a 4-bit asynchronous UP/Down counter with a control for up/down counting.
$7^{\text {th }}$	$7^{\text {th }}$	Realize a 4-bit synchronous UP/Down counter with a control for up/down counting.
$8^{\text {th }}$	$8^{\text {th }}$	Implement Mode-10 asynchronous counters
$9^{\text {th }}$	$9^{\text {th }}$	Study shift registers.
$10^{\text {th }}$	$10^{\text {th }}$	General Programming using 8085A development board 1'S Complement, 2'S Complement
$11^{\text {th }}$	$11^{\text {th }}$	Addition of 8-bit number Subtraction of 8 -bit number
$12^{\text {th }}$	$12^{\text {th }}$	Decimal Addition 8-bit number Decimal Subtraction 8-bit number.
$13^{\text {th }}$	$13^{\text {th }}$	Compare between two numbers Find the largest in an Array, Block Transfer
$14^{\text {th }}$	$14^{\text {th }}$	Traffic light control using 8255, Generation of square wave using 8255

Teaching Faculty

HOD, ELE

Principal

